"저희 흔들려요"

흔들리기만 하겠습니다!

이윈호교수님

구조 자문

손소인(4)

3D 모델링 및 구조 검토 정순호(3)

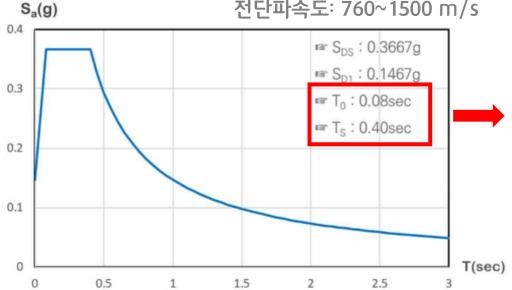
구조 계산 및 검토 염현우(2)

PPT 제작 및 아이디어 발상 박진우(2)

시공성 및 경제성 검토

건축공학과의 자존심을 걸고 지진에 견딜 수 있는 튼튼한 구조물을 만들겠습니다!

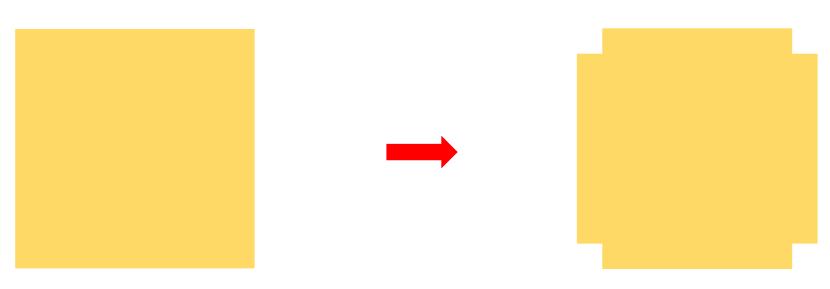
▋ 지반 분석 및 설계 방향


3. 설계스펙트럼 정보(KBC 2016)

- 지반종류 : Sa - 지진구역 : I

- 유효지반가속도(S): 0.22g

SB 지반: 보통암 지반 전단파속도: 760~1500 m/s


KBC2016 기준

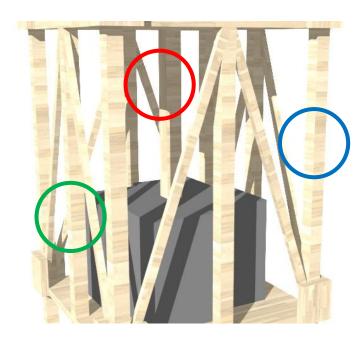
- 1. 주기를 0.08초보다 미만으로 하는 것
- → 재료의 한계, 경제성이 떨어진다
- 2. 주기를 0.4초 이상으로 하는 것
- → 구조물의 전도 우려가 있다
- - 3. 주기를 0.08초~0.4초 이내로 설계
 - → 최대 가속도 구간 내로 설계하되 최상층에 제진장치를 설치해 가속도를 절감시킨다

▋ 단면 설계

지진하중은 X,Y축에서 모두 가해지므로 모든 방향에서 동일한 단면2차모멘트값이 적용되도록 함

→ 원형이 가장 이상적이지만 경제성이 떨어진다 시공성이 우수한 **사각형** 채택 사각형 단면을 기반으로 하되 기둥을 모서리에 끼우는 형식으로 제작하기 위해 plate를 다음과

같이 절단


강접재 포함 단면적

 $:170 \times 170 = 28900 \text{mm}^2$

→ 규정 30000m² 이하 만족

기둥 설계

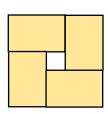
주기둥 (일체형)

- → <u>구조물의 연성 증진</u>, 취성파괴 방지 접합부를 분산시키는 접합 방식
- → 접합부의 취약함 해결

보조기둥 (분리형)

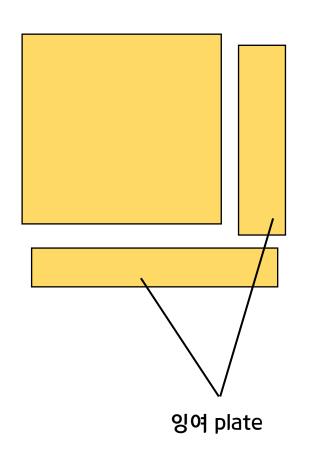
기둥과 슬래브 분리로 인한 슬래브 붕괴 방지

→ 각 층에 보조기둥 및 코어 설치


코어 (분리형)

→ 주기둥과 마찬가지로 정사각형 단면이지만 strip 6개를 사용해서 <u>강성증대</u>

보조기둥, 주기둥 단면


X축, Y축 방향 모두 같은 힘을 받도록 한다

→ strip 4개를 붙여 정사각형 단면으로 설계

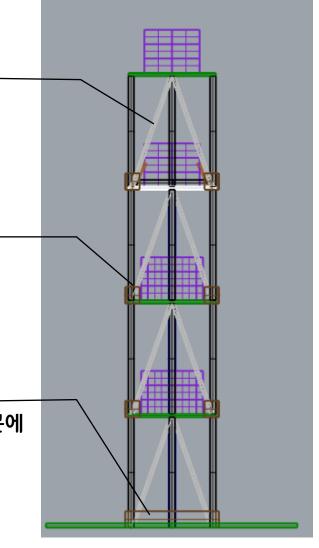
▋ 내진 성능 보강

가새

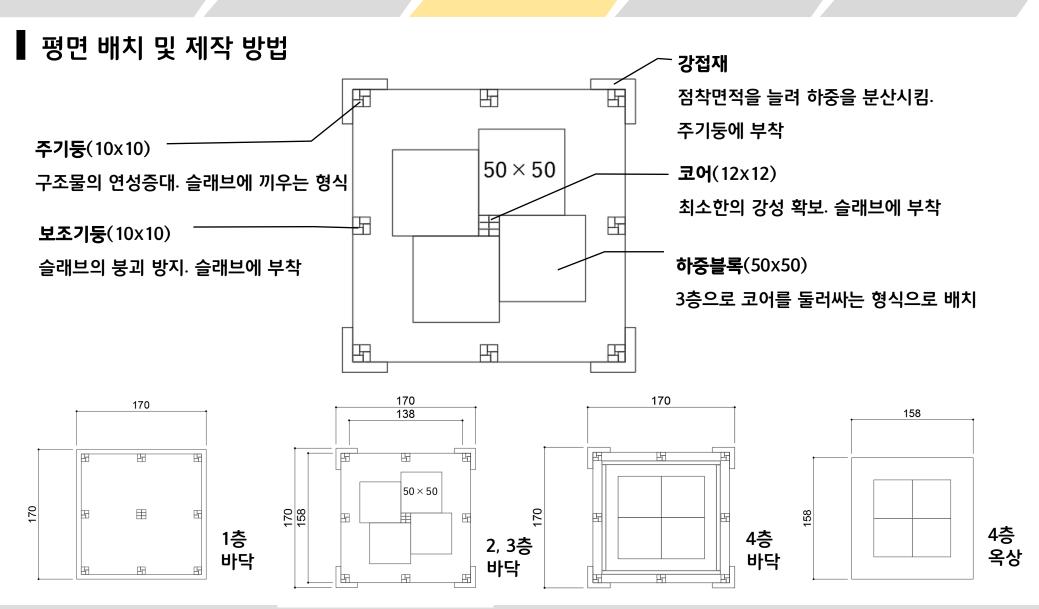
일반적인 대각가새 사용

→ 시공성 향상, 강성 증대

강접재

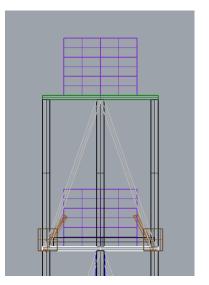

남은 plate를 잘라 재사용

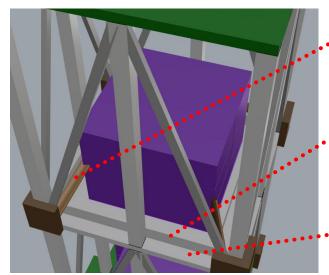
→ 점착면적을 늘림

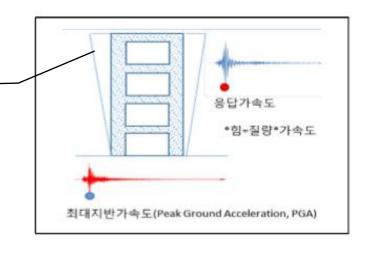

1층 보강재

가장 큰 하중을 버텨야 하기 때문에 plate로 사면을 둘러싸는 형태

→ 강성 증대




제진 장치


건물의 상층부로 갈수록 가속도 증가 → 최상층 제진장치 사용, 가속도 저감 필요

질량형 제진장치

하중블록을 바닥에 고정시키지 않고 제진장치로 사용. 하중블록의 질량이 가지는 관성력에 의해 에너지 흡수

면줄 사용

하중블록을 기둥과 연결

MDF strip 사용

2개 겹쳐 사용(120mm), 하중블록의 낙하 방지

A4지 사용

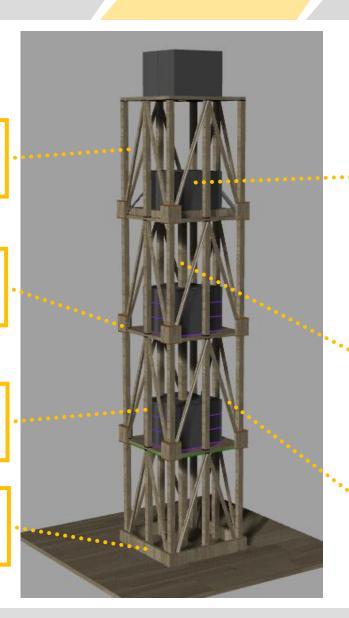
마찰력 증대, 구조체가 받는 지진 에너지를 줄여줌

최종 모델

일체형 기둥

연성 증대, 취성파괴 방지

강접재


점착면적을 늘림, 하중 분산

보조 기둥

슬래브 붕괴 방지

1층 보강재

1층의 강성 보강

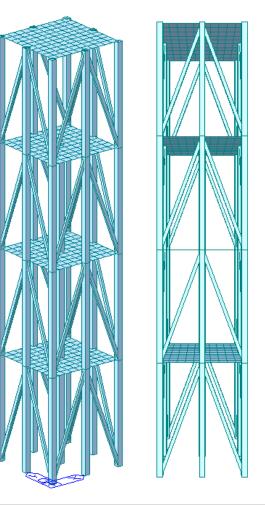
최상층 제진장치

하중블록을 제진장치로 이용,

가속도 저감

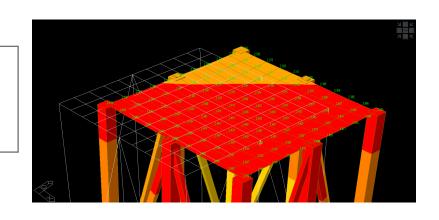
코어(1-3층)

최소한의 강성 확보,

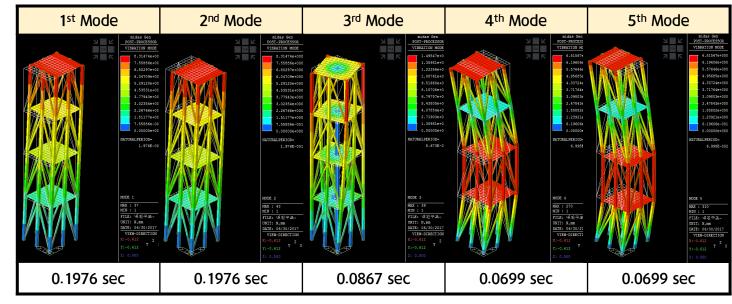

건물의 중심을 잡아줌

가새

내진성능 보강, 강성 증대

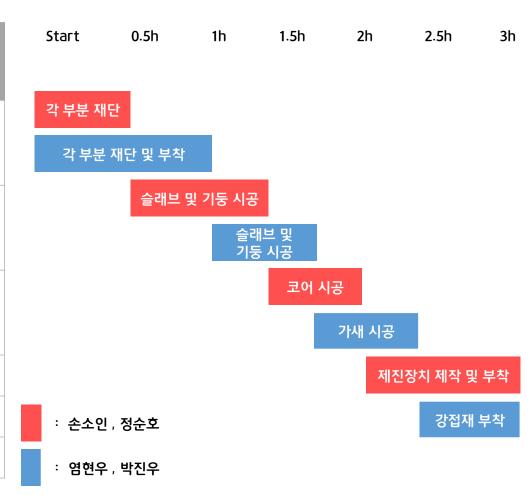


모델 분석



상부 최대 변위

: 2.4mm


▋ 붕괴 메커니즘

▋ 경제성 검토 및 공정계획

재료명	단위	규격	단위 수량	단가 [백만윈]	필요량	재료당 가격
MDF Base (기초판)	개	400×400 ×6 [mm³]	1	-	1	-
MDF Strip	개	600×400 ×6 [mm³]	1	10	72	720
MDF Plate	개	200×200 ×6 [mm³]	1	100	4	400
면줄	식	600 [mm]	1	10	1	10
A4 자	장	A4	1	10	1	10
접착제	개	20 g	1	200	2	400

총 1540백만원

"저희 흔들려요"

흔들리기만 하겠습니다!

이원호교수님

구조 자문

손소인(4)

3D 모델링 및 구조 검토 정순호(3)

구조 계산 및 검토 염현우(2)

PPT 제작 및 아이디어 발상

박진우(2)

시공성 및 경제성 검토

건축공학과의 자존심을 걸고 지진에 견딜 수 있는 튼튼한 구조물을 만들겠습니다!

▋ 대회 주제 및 심사기준

"건전하고 창의적인 **내진설계**를 통한 구조물 **안전성** 확보"

구조물의 목표 내진성능과 이에 최적화된 설계방법의 이해

구조물의 지진 시 거동 예측 능력 및 부재강도 평가 능력

지반가속도 0.7g 수준에서 구조물의 <mark>파괴를 유도</mark>하는 정밀한 설계

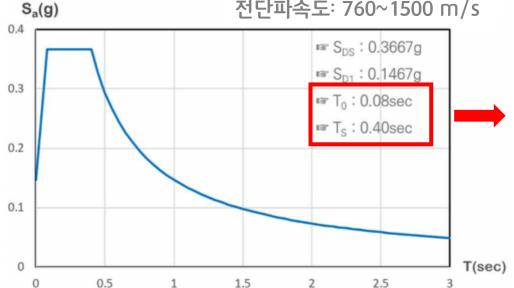
시공성과 경제성을 고려하고 구조물의 아름다움을 추구하는 설계

구조해석 능력 외 도면화, 수량산출 및 내역작성 기술

내진설계

"내진설계의 주요 윈칙"

- 건물의 질량, 강성, 강도를 평면적으로 수직적으로 균등히 분포
 - 건물의 질량, 강성 등이 특정지역에 집중될 경우 그 곳에 지진하중이 집중해서 발생하므로 위험
 - 전이층과 같이 다른 기준층에 비해 질량이 크고 강성이 큰 층이 발생할 경우 세심한 내진설계가 필요
- 구조적 잉여요소를 충분히 확보하여 건물의 파괴형상을 연성적으로 유도
 - 강력한 지진이 왔을 경우 취성파괴를 막고 연성거동을 통한 지진력 흡수가 필요
 - 한 부재 파괴 시 다른 부재가 그 힘을 지탱할 수 있는 잉여요소 확보
 - 각 부재들의 취성파괴가 발생하지 않도록 설계


▋ 지반 분석 및 설계 방향

3. 설계스펙트럼 정보(KBC 2016)

- 지반종류 : Sa - 지진구역 : I

- 유효지반가속도(S): 0.22g

KBC2016 기준 SB 지반: 보통암 지반 전단파속도: 760~1500 m/s

- 1. 주기를 0.08초보다 미만으로 하는 것
- → 재료의 한계, 경제성이 떨어진다
- 2. 주기를 0.4초 이상으로 하는 것
- → 구조물의 전도 우려가 있다

- 3. 주기를 0.08초~0.4초 이내로 설계
- → 최대 가속도 구간 내로 설계하되 최상층에 제진장치를 설치해 가속도를 절감시킨다

▋ 건물의 진동제어 방법

내진	제진	면진
건물이 지진력을 이겨내도록 건물 자체를 튼튼하게 설계	별도 장치를 이용, 지진력에 상응 하는 힘을 건물 내에서 발생시킴	건물과 지반을 분리시켜 건물에 전달되는 지진력을 감소시킴
진동 저감 없음	진동 제어	진동 저감
+++ ++ ++		++ ++ ++
건물 자체	점탄성 감쇠장치, TMD, 엑츄에이터를 이용한 능동적 제어	적층 고무를 기초에 삽입한 수동적 제어
	건물이 지진력을 이겨내도록 건물 자체를 튼튼하게 설계 진동 저감 없음	건물이 지진력을 이겨내도록 별도 장치를 이용, 지진력에 상응 건물 자체를 튼튼하게 설계 진동 제어 진동 제어 전동 제어 전용 제어 전용 제어 전용 제어 전용 제안

재료의 한계, 구조물과 기초판의 탈락 우려로 면진은 사용하지 않음.

→ 내진, 제진 방식 채택

■ 제진장치의 제어 방식에 따른 분류

구분	수동형 제진장치	능동형 제진장치	준능동형 제진장치
제진 원리	구조물의 에너지 소산 능력을 증가시켜 진동 에너지 흡수 및 발산	구조물에 직접적으로 큰 제어력을 가해 구조물의 응답을 감소	에너지 소산장치의 특성을 매순간 변화시켜 구조물의 진동을 감소
제진 특성	■ 장점 - 외부 전력 필요 없음 - 센서 및 제어가 필요 없음 - 안정적인 성능 발휘 ■ 단점 - 큰 질량 필요 - 특정 하중에만 효과 - 예기치 못한 진동에 취약	■ 장점 - 다양한 하중에 효과적 - 제어 성능 최대 ■ 단점 - 대규모 전력 필요 - 센서 및 제어 필요 - 비상시 안정성/신뢰성 결여 (지진으로 인한 전력 차단)	■ 장점 - 소규모 전력 사용 - 안정적인 성능 발휘 - 제어성능: 중 ■단점 - 센서 및 제어 필요
종류	TMD, TLD	AMD, 하이테크 장비 마운트	MR 댐퍼, 사장교 케이블 제어

외부 전력 사용불가 및 하중블록을 질량으로 사용 가능

→ 수동형 제진장치 'TMD' 채택

▮ MDF 물성치 분석

$$E = \frac{PL^3}{3\delta I} \qquad I = \frac{bh^3}{12}$$

L = 200mm, I = 34.1mm⁴ (사용한 MDF의 면적=45x45)

P[N]	0.235	0.335	0.435	0.535	0.635	0.735
δ[mm]	12	17	22	28	35	43
E[N/mm²]	1528.3	1537.9	1543.1	1491.1	1415.9	1334

→ MDF 탄성계수 평균: 1475 Mpa

단면 설계

바닥면적이 클수록 안정적

규정: 10,000㎜ - 30,000㎜

30,000㎜에 최대한 가깝게 함

지진하중은 X,Y축에서 모두 가해지므로 모든 방향에서 동일한 단면2차모멘트값이 적용되도록 함

→ 원형이 가장 이상적이지만 경제성이 떨어진다시공성이 우수한 **사각형** 채택

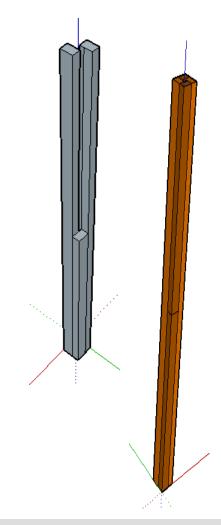
단면 설계

INTRO

사각형 단면을 기반으로 하되 기둥을 모서리에 끼우는 형식으로 제작하기 위해 plate를 다음과 같이 절단

기둥을 부착했을 때의 단면적

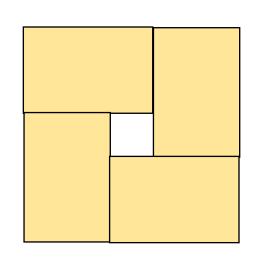
:158X158=24964mm²


강접재까지 부착했을 때의 단면적

: 170x170=28900mm²

→ 규정 30000㎡ 이하 만족

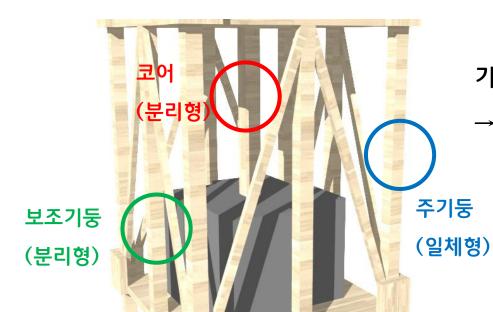
▋ 기둥 설계



접합부를 분산시키는 접합 방식

→ 접합부의 취약함 해결

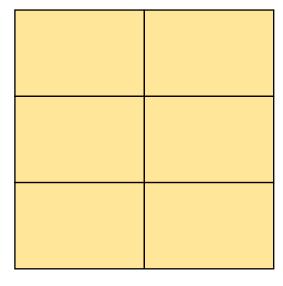
→ 구조물의 <mark>연성 증진</mark>, 취성파괴 방지



X축, Y축 방향 모두 같은 힘을 받도록 한다

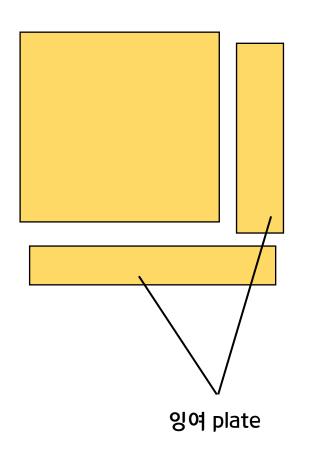
→ strip 4개를 붙여 <mark>정사각형</mark> 단면으로 설계

▋ 기둥 설계



기둥과 슬래브 분리로 인한 슬래브 붕괴 방지

→ 각 층에 보조기둥 및 코어 설치


정중앙에 코어 설치

→ 주기둥과 마찬가지로 정사각형 단면이지만 strip 6개를 사용해서 강성증대

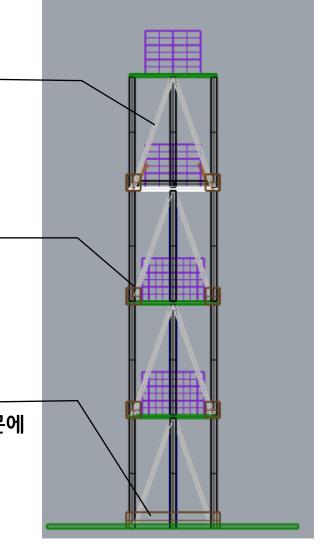
▋ 내진 성능 보강

가새

일반적인 대각가새 사용

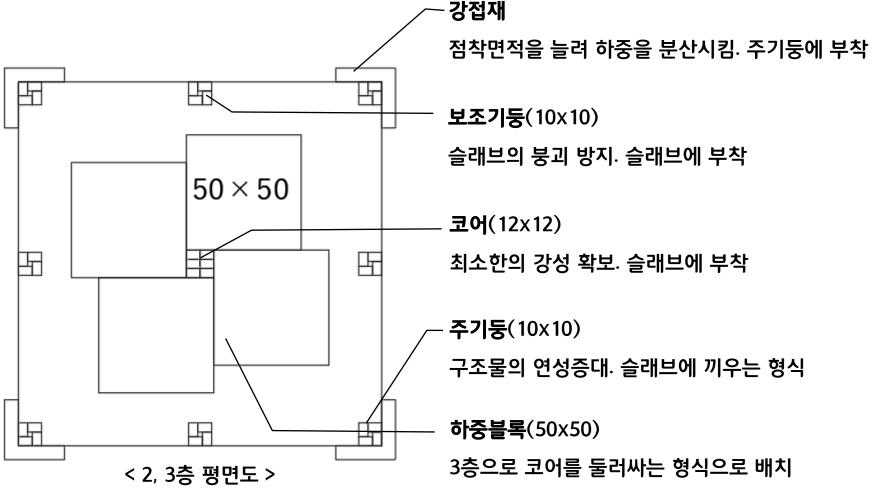
→ 시공성 향상, 강성 증대

강접재


남은 plate를 잘라 재사용

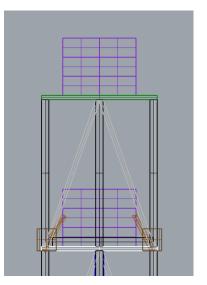
→ 점착면적을 늘림

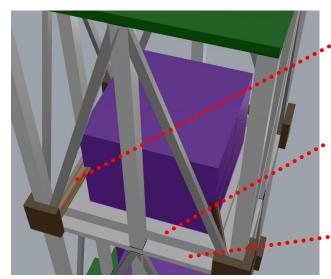
1층 보강재

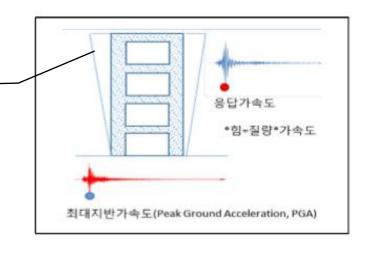

가장 큰 하중을 버텨야 하기 때문에 plate로 사면을 둘러싸는 형태

→ 강성 증대

▋ 평면 배치 및 제작 방법




제진 장치


건물의 상층부로 갈수록 가속도 증가 → 최상층 제진장치 사용, 가속도 저감 필요

질량형 제진장치

하중블록을 바닥에 고정시키지 않고 제진장치로 사용. 하중블록의 질량이 가지는 관성력에 의해 에너지 흡수

면줄 사용

하중블록을 기둥과 연결

MDF strip 사용

2개 겹쳐 사용(120mm), 하중블록의 낙하 방지

A4지 사용

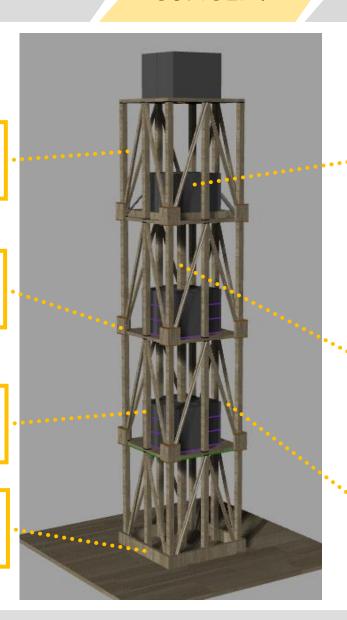
마찰력 증대, 구조체가 받는 지진 에너지를 줄여줌

최종 모델

일체형 기둥

연성 증대, 취성파괴 방지

강접재


점착면적을 늘림, 하중 분산

보조 기둥

슬래브 붕괴 방지

1층 보강재

1층의 강성 보강

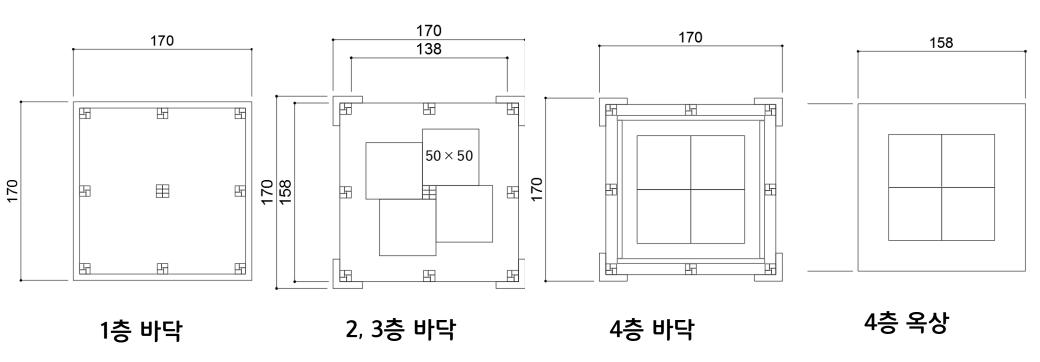
최상층 제진장치

하중블록을 제진장치로 이용,

가속도 저감

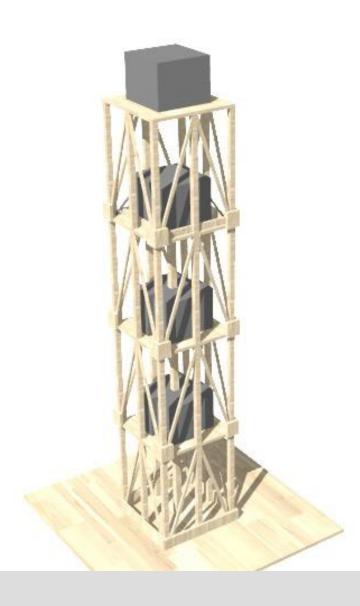
코어(1-3층)

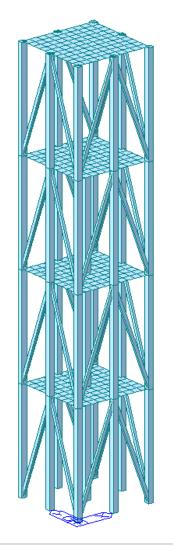
최소한의 강성 확보,

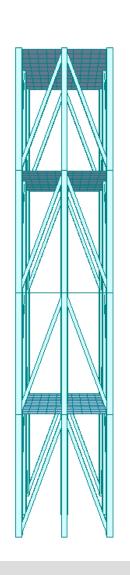

건물의 중심을 잡아줌

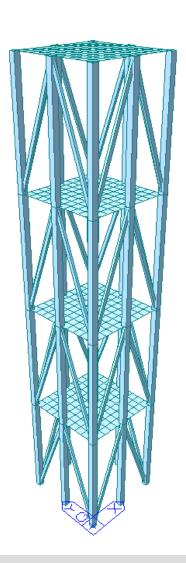
가새

내진성능 보강, 강성 증대


평면도


최종 모델


INTRO



모델 분석

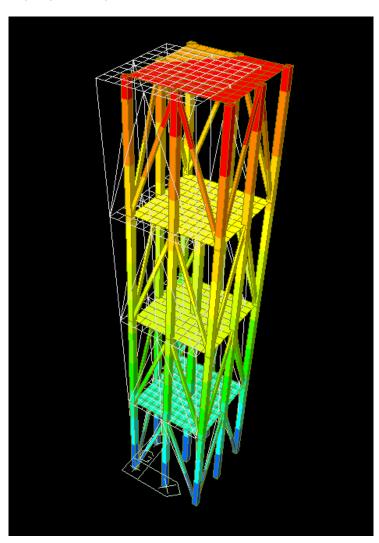
MIDAS-Gen을 사용하여 분석

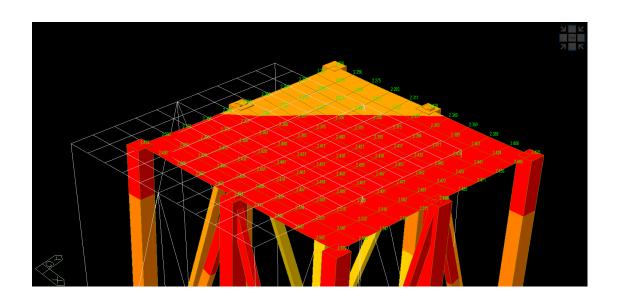
Seismic Load Code: KBC 2016

• Site Class: SB

• Seismic Zone: 1

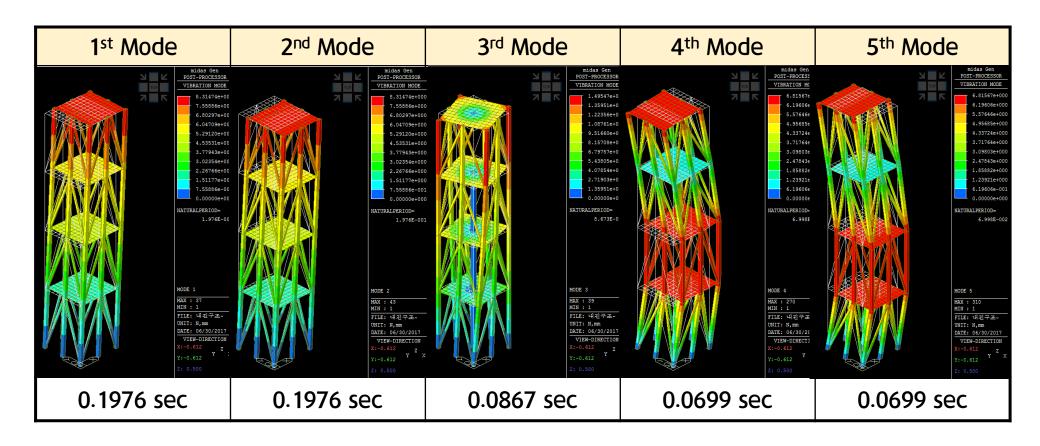
• 유효지반가속도: 0.22g


• 구조물 비중: 0.000072128N/mm²


• 포아송비: 0.3

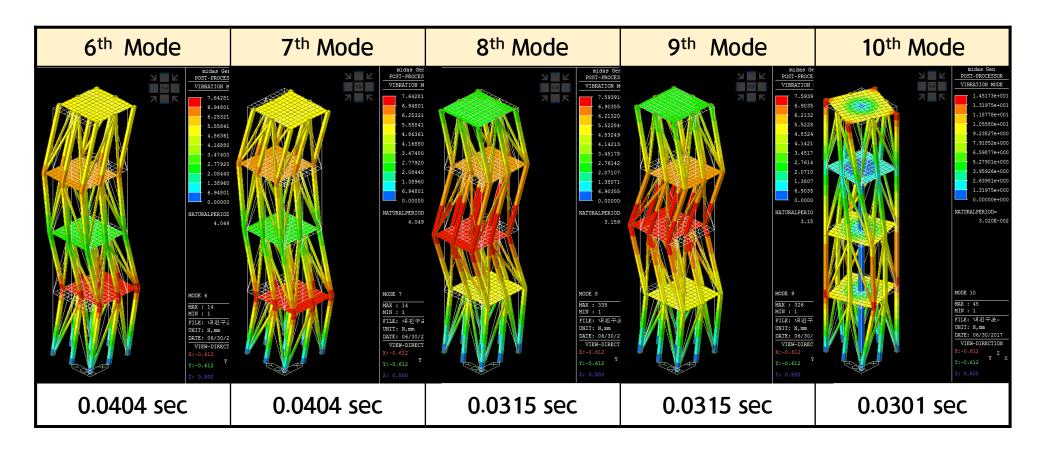
• 탄성계수: 1475MPa

▋ 최대 변위


상부 최대 변위

: 2.4mm

INTRO ANALYSIS CONCEPT MIDAS REVIEW


▋ 붕괴 메커니즘

INTRO ANALYSIS CONCEPT MIDAS REVIEW

▋ 붕괴 메커니즘

▋ 물량산출 및 경제성 검토

재료명	단위	규격	단위 수량	단가[백만원]	필요량	재료당 가격
MDF Base(기초판)	개	400×400×6 [mm ³]	1	_	1	_
MDF Strip	개	600×400×6 [mm ³]	1	10	72	720
MDF Plate	개	200×200×6 [mm ³]	1	100	4	400
면줄	식	600 [mm]	1	10	1	10
A4 자	장	A4	1	10	1	10
접착제	개	20 g	1	200	2	400

➡ 총 1540백만원으로 기준치인 2400백만원 이하 만족

공정계획

Start 0.5h 1h 1.5h 2h 2.5h 3h

각 부분 재단

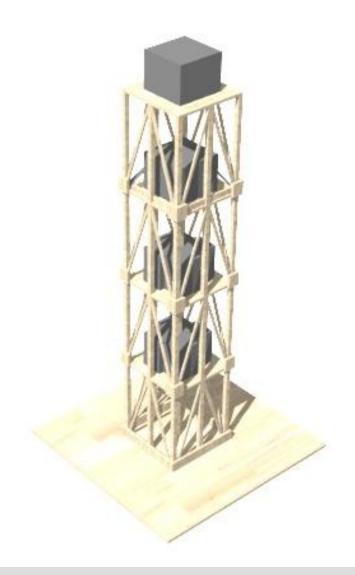
각 부분 재단 및 부착

슬래브 및 기둥 시공

슬래브 및 기둥 시공

코어 시공

가새 시공


제진장치 제작 및 부착

강접재 부착

: 손소인 , 정순호

: 염현우 , 박진우

Thank you

